KLF5 regulates the integrity and oncogenicity of intestinal stem cells.

نویسندگان

  • Takeo Nakaya
  • Seishi Ogawa
  • Ichiro Manabe
  • Masami Tanaka
  • Masashi Sanada
  • Toshiro Sato
  • Makoto M Taketo
  • Kazuki Nakao
  • Hans Clevers
  • Masashi Fukayama
  • Masahiko Kuroda
  • Ryozo Nagai
چکیده

The intestinal epithelium maintains homeostasis by a self-renewal process involving resident stem cells, including Lgr5(+) crypt-base columnar cells, but core mechanisms and their contributions to intestinal cancer are not fully defined. In this study, we examined a hypothesized role for KLF5, a zinc-finger transcription factor that is critical to maintain the integrity of embryonic and induced pluripotent stem cells, in intestinal stem-cell integrity and cancer in the mouse. Klf5 was indispensable for the integrity and oncogenic transformation of intestinal stem cells. In mice, inducible deletion of Klf5 in Lgr5(+) stem cells suppressed their proliferation and survival in a manner associated with nuclear localization of β-catenin (Catnb), generating abnormal apoptotic cells in intestinal crypts. Moreover, production of lethal adenomas and carcinomas by specific expression of an oncogenic mutant of β-catenin in Lgr5(+) stem cells was suppressed completely by Klf5 deletion in the same cells. Given that activation of the Wnt/β-catenin pathway is the most frequently altered pathway in human colorectal cancer, our results argue that KLF5 acts as a fundamental core regulator of intestinal oncogenesis at the stem-cell level, and they suggest KLF5 targeting as a rational strategy to eradicate stem-like cells in colorectal cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor and Stem Cell Biology KLF5 Regulates the Integrity and Oncogenicity of Intestinal Stem Cells

The intestinal epithelium maintains homeostasis by a self-renewal process involving resident stem cells, including Lgr5þ crypt-base columnar cells, but core mechanisms and their contributions to intestinal cancer are not fully defined. In this study, we examined a hypothesized role for KLF5, a zinc-finger transcription factor that is critical tomaintain the integrity of embryonic and induced pl...

متن کامل

KLF-5 extends its fingers to desmosomes: the next frontier for enteric epithelial research?

PATHOLOGICAL ALTERATIONS in intestinal epithelial permeability can be a cardinal feature of inflammatory bowel disease (IBD). A monolayer of intestinal epithelial cells (IECs) and the junctions that seal the paracellular spaces between them serve as the body’s primary barrier against luminal pathogens, provide a means for selective permeability of nutrients and water, and enable the establishme...

متن کامل

Salidroside regulates the expressions of IL-6 and defensins in LPS-activated intestinal epithelial cells through NF-κB/MAPK and STAT3 pathways

Objective(s): To reveal the detailed mechanism underlying the functions of salidroside on the inflammation of intestinal epithelial cells during IBD.Materials and Methods: Quantitative real-time PCR was employed to assess the expression of IL-6, IL-10, and α-defensins 5 and 6. ELISA assay was performed to measure the secretion of IL-6 and IL-10. MTT assay was used to determine the cell viabilit...

متن کامل

CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5.

Intestinal metaplasia of the stomach, a mucosal change characterized by the conversion of gastric epithelium into an intestinal phenotype, is a precancerous lesion from which intestinal-type gastric adenocarcinoma arises. Chronic infection with Helicobacter pylori is a major cause of gastric intestinal metaplasia, and aberrant induction by H. pylori of the intestine-specific caudal-related home...

متن کامل

Klf5 is involved in self-renewal of mouse embryonic stem cells.

Self-renewal of embryonic stem cells (ESCs) is maintained by a complex regulatory mechanism involving transcription factors Oct3/4 (Pou5f1), Nanog and Sox2. Here, we report that Klf5, a Zn-finger transcription factor of the Kruppel-like family, is involved in ESC self-renewal. Klf5 is expressed in mouse ESCs, blastocysts and primordial germ cells, and its knockdown by RNA interference alters th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 74 10  شماره 

صفحات  -

تاریخ انتشار 2014